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bjective

To quantify and understand the
impacts of global climate and
emission changes from the present
to 2050 on U.S. water quality,
focusing on the nitrogen cycle.
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[ The objective will derive from the application of a unique, state-of-the-art,
integrated modeling system that couples a global climate-chemical
transport component with a mesoscale regional climate-hydrology-air
quality-water quality component over North America.

L The system predicts the interactive dynamical, physical and biogeochemical
processes that govern the movement of water and pollutants in the air and
on land (surface, subsurface, streams, plants, human).

[ The system incorporates multiple alternative model configurations
representing the likely range of climate sensitivity and biogeochemistry
response under the conceivable anthropogenic emissions scenarios to
rigorously assess the result uncertainty for improving risk analysis.
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Assessment of Global Change Impacts on U.S. Air and Water Quality



Watershed System
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Hydrologic Cycle Simulated by SWAT
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A water footprint consists of three components: the blue, green and grey water footprint. The blue water footprint is the volume of freshwater that evaporated from the global blue water resources (surface water and ground water) to produce the goods and services consumed by the individual or community. The green water footprint is the volume of water evaporated from the global green water resources (rainwater stored in the soil as soil moisture). The grey water footprint is the volume of polluted water that associates with the production of all goods and services for the individual or community. The latter can be estimated as the volume of water that is required to dilute pollutants to such an extent that the quality of the water remains at or above agreed water quality standards.

http://en.wikipedia.org/wiki/Water_footprint#Blue.2C_green_and_grey_water_footprint
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Nitrogen Cycle

¢ Nitrogen include 4 forms: dremnstherfeliikation
(lightning arc discharge)

-Ammonia (NH3)
-Nitrite (NOZ_) N p Harvest
NI (NOB_) — Symbiotic fitiun J fertilizer
-Nitrogen gas (N2) N manures,

wastes,
and sludge
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SWAT Application in Watershed Basin

Upper Mississippi River Basin
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Upper Mississippi (131 8-digits)
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In CAR, add label (1018); update names for CSIRO and F-L


NOAA
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CWRF Downscaling Seasonal
Climate Prediction over the U.S.
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CWRF Downscaling Seasonal Climate Prediction over the United States

Frequency distribution of root mean square errors (RMSE, mm/day) for the interannual variations of seasonal
precipitation over land predicted by the CFS and CWRF based on 5 ensemble members during wintertime of
1982-2008. Seasonal precipitation is binned at an interval of 0.1 mm/day. After Yuan and Liang (2011, GRL).
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CMAQ Captures Depositions

Nitrate ion wet deposition, 1995

Ammonium ion wet deposition, 1995
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When changes in both climate and emissions are
incorporated, the two scenarios project opposite changes
of nitrate wet deposition in the Midwest and Northeast:
increases under A1Fi but decreases under A1B with similar
maghnitudes of 400-1000 mg/m2/year.

The wet deposition changes resemble dry deposition in
spatial pattern but with substantially larger magnitudes by
a factor of 40-50. Thus the wet deposition is the
predominant sink for nitrate aerosols.
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Kg/ha => 106 mg / 104 m2 = 100 mg/m2
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Build National Predictive Capability




Couple the System Components
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Build 1/0O Data Processor

SWAT requires diversity information with thousands of data files. This prohibits
effective coupling with CWRF for parallel computing. Intensive and careful re-
engineering work has been done to solve this problem. We first classified all
input and output variables according to their function and the order of their
usage in the program, and then wrote all categories in the sequential order into

one binary file.
Input
Component

Prediction
Component

There are three categories: |
variables that will be e— J Hydrologic Dataset
initialized by reading
operation, variables that
are not used in the 1/0O
operation, and variables CWRF
that are output. As such,
only a reading interface is
needed between input
data processing and model
predicting component.

= Meteorological Dataset

Intermediate varibles

: .
]
l Output
C t
-«  Qutput variables : omponen




Develop the transmissive interface between
the basin based SWAT and gridded CWRF

Requirement:

e Conservation of intensity or flux
e Real-time transaction

e High effectiveness

Solution:
e Areaweighted method (now)
 Flux coupler approach (future)




SWAT Subbasins Distribution with CWRF grids

* More than 70% subbasin have 2 or more CWRF grids

Resolution
can be
refined

SWAT subbasin number

CWRF 30km
is comparable to
SWAT 8-digit subbasin

450

Subbasin distribution with increasing

of CWREF grid number in each subbasin

CWif GRID_ | Scttese OWRF GRID | Scttesn

0 47 2.23% |14 3 0.14%

1 188 | 8.93% | 15 2 0.10%

2 420 | 19.95% | 16 1 0.05%

3 429 | 20.38% | 17 1 0.05%

B 350 | 16.63% | 19 1 0.05%

5 226 | 10.74% | 20 1 0.05%

6 156 | 7.41% |21 1 0.05%

7 101 | 4.80% | 22 1 0.05%

8 67 3.18% |23 1 0.05%

9 51 242% |24 1 0.05%

10 24 1.14% | 25 1 0.05%

11 12 0.57% | 26 1 0.05%

12 11 0.52% | 49 1 0.05%

13 6 0.29% |60 1 0.05%
T T T T T
16 20 24 28 32 36 40 44 48 52 56 60 64

CWRF grid number
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Streamflow Comparison

Correlation coefficient of PSWAT streamflow
with USGS observations is 0.88
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Streamflow at the Colorado River

WYOMIN
EVADA G
UTAH

The original SWAT simulates it very poorly




Reservoir volume
distribution in each subbasin
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Streamflow at the Colorado River

After incorporating the reservoir effects, the streamflow
is improved remarkably. But large errors still exist in 3

abundant precipitation years, indicating that the reservoir

module need to be further refined.
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Streamflow Stations from USGS

For examination of the
performance of the PSWAT
running over the continuous
U.S., we collected the USGS
streamflow historic dataset :
more than 1500 stations P e

Extracted the stations with
monthly data records of >20
days, and calculated the
correlation coefficient
between observed and
simulated interannual
streamflow variations




The performance
in the eastern and
central U.S. is
better than the
western mountain
semi-arid region

The poor skill may
partially result
from precipitation
observational data
uncertainty

Correlation Coefficient
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Simulated and Observed Nitrogen

The observed data from monitoring
large rivers in the national stream
quality accounting network (NASQNA)
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PSWAT Nitrogen Distribution
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PSWAT is Built to Predict Water Change

Predictive SWAT (PSWAT) has been developed, tested, and is ready for
online coupling with CWREF, further refinement and system optimization

It incorporates atmospheric information (precipitation, temperature,
radiation, wind, humidity, and nitrogen deposition) and point sources
and management strategies

It captures the streamflow characteristics in most regions of the U.S.

It provides a unigue modeling tool to better understand and predict
potential consequences of climate change on hydrologic processes

Its application next will enable us to identify, at the national scale,
relative vulnerabilities of U.S. water resources to global change and
provide scientific guidance for developing adaptive strategies
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